

NORTHWEST NAZARENE UNIVERSITY

The Brain (Concurrent, In-Memory Caching)

THESIS

Submitted to the Department of Mathematics and Computer Science
in partial fulfillment of the requirements for the degree of

BACHELOR OF SCIENCE COMPUTER SCIENCE with a focus in DATA SCIENCE

Orion Trotter

2022

THESIS

Submitted to the Department of Mathematics and Computer Science in partial fulfillment of the

requirements for the degree of

BACHELOR OF SCIENCE COMPUTER SCIENCE with a focus in DATA SCIENCE

Orion Trotter

2022

The Brain (Concurrent, In-Memory Caching)

Author: __

 Orion Trotter

Approved: __

Kevin McCarty, Ph. D., Department of Mathematics & Computer Science,
Faculty Advisor

Approved: __

 Dean Matlock, Department of Criminal Justice, Assistant Professor

Approved: __

 Barry Myers, Ph. D., Chair, Department of Mathematics & Computer Science

4/28/2022

4/29/2022

4/29/2022

4/28/2022

iii

ABSTRACT

The Brain (Concurrent, In-Memory Caching).

TROTTER, ORION - Department of Mathematics & Computer Science

Databases serve as a frequent medium for applications requiring the parsing of big-data.

Concurrent cloud database services ease and expediate the sequence and complexity from data-

source through the database to the application’s domain logic. Applications that require near

real-time precision in the timing of their data acquisition, like the trading application explored,

are overtly hindered by distance from their source and any additional machine-level complexity

introduced by establishing new connections with external connections. We see efforts to mitigate

such latency in stock trading with companies such as Polygon.io, that establish servers that are

physically present and connected to the servers at the various stock exchanges. Where, therein,

one disconnects latency inducing intermediaries to receive and parse the raw data is the problem

addressed here. Here we utilize principles of computer architecture and operating systems to

store the data in-memory, serving as a cache for the domain logic and user-interface. Once the

cache reaches a specified capacity, the data is stored in a database for analysis and reference on a

parallel thread. This resulted in a more than 7000x reduction in latency and simplify integration

with future plug-ins.

iv

ACKNOWLEDGEMENTS

 Thank God for the blessing of curiosity that provides the foundation for all exploration

and discovery, resulting in the joy we feel during and after, as well as the mutual benefit we all

receive from offering such discovery to others. Without my wife’s patience and support, there

would be little progress with this project. She’s always proven vital to progress within any work

I’ve done. Dr. McCarty, thank you for your constant guidance and bringing me into this project!

Your faith and trust in me not only benefitted the work of this project but brought me to a point

in my careers I don’t believe would’ve been possible (in so short of a time at least) otherwise.

Dr. Hamilton, for seemingly unlimited reasons as well. Your support and passion behind all

subjects Computer Science brought me to Northwest Nazarene University and bolstered my

confidence throughout my years at the university. Dr. Myers, thanks for holding the bar tight. Of

course, my parents and brothers, without whom I would not be the man I am today.

v

TABLE OF FIGURES

ABSTRACT ... iii

ACKNOWLEDGEMENTS .. iv

TABLE OF FIGURES .. 1

TABLE OF FIGURES .. 2

PROJECT BACKGROUND .. 1

Initial Idea ... 1

Other Caches ... 2

PROJECT OBJECTIVE .. 3

Brain Objective .. 3

Tertiary “Core” Objective .. 3

IMPLEMENTATION .. 4

Creating the Brain ... 5

Modified Data Structures, Networking, and Data Types .. 7

CONCLUSION ... 12

FUTURE WORK .. 13

REFERENCES .. 14

vi

TABLE OF FIGURES

Figure 1 Macro Level Diagram .. 4

Figure 2 MemberBase.cs ... 5

Figure 3 Final Solution Structure... 7

Figure 4 Example for Iteration .. 9

Figure 5 ThreadSafeAction .. 10

Figure 6 Adding a void method to a thread-safe action ... 10

Figure 7 Example pipe from socket ... 11

1

PROJECT BACKGROUND

Initial Idea

An automated trading application requires recent market data to evaluate, an algorithm to

execute such evaluation, and a service to execute trades. Architecturally this becomes more

complicated. Since the amount of market data incoming can be around 100 gigabytes per hour,

it’s typically sifted algorithmically, and important data stored in a database. The process of live

information arriving to a system (in this case from New York to Idaho), storing that information

in a database, calling procs to process such information from the application, and retrieving

multiple datapoints, then making a REST call from the application to San Francisco (which then

uses a TCP socket to New York), introduces significant latency over a simulation with data

points loaded and 0 delay between call and execution. Latency, in this case refers to the amount

of time from when one wishes to execute a trade and the trade is executed. A simple example: if

it takes 4 seconds to retrieve a large group of stocks and identify the stock for which to execute a

trade, then 3 seconds to send and execute such a trade, we have 7 seconds of latency. The major

issue with algorithmic trading latency is that when algorithms turn around stocks quickly based

on very small profit margins, the margin can disappear quickly with volatile stocks. An example

of such: AAA is trading at $7.05. 4 seconds later it’s at $7.11 and the algorithm picks it up as a

trade (still at $7.05), sending off to purchase with a sell point of greater than 7.11, the stock has

raised to 7.15 in the 3 seconds it takes to execute and begins to decrease. The 7 second cycle can

execute again with the stock on a downward trend. In simulation purchases and sales occur on

the timestamp of when the data is collected. Live trading had a discrepancy akin to the

aforementioned.

2

An initial need was to minimize any latency in retrieving market data from New York

and executing trades. This need led to the idea to develop an in-memory cache for all real time

data. The cache would be developed for concurrency and small-footprint performance. Signals,

in the application’s case delegates or events, are sent to multiple locations immediately and the

same information is moved to long-term storage according to preset intervals. Just like the

human brain’s deviation of responsibility between the prefrontal cortex (short-term memory) and

neocortex (long-term memory), the responsibility of the in-memory cache is to render the most

recently retrieved information immediately available, and via another thread store slowly

retrieved long-term information in a database. The project is thus referred to as “the Brain”.

Other Caches

.NET provides two caching libraries: MemoryCache, which serves as a similar in-

memory cache, and DistributedCache, which serves as a concurrent, heap-allocated distributed

cached (Microsoft, 2021). Both caching libraries require interface implementations along with

heavy generic libraries which introduce several rounds of boxing and unboxing. This process of

boxing, converting value types to heap-allocated, generic objects and reallocating those objects

to other value or reference types, is burdensome and exponentially slower than working with

direct value-types. The MemoryCache, while still boxing objects by virtue of its genericism,

rapidly relinquishes heap space by replacing values of the same type or capacity. It further allows

an option to set time-limits for objects stored withing memory. With the performance requisites

of live-trading, a more catered solution was required.

3

PROJECT OBJECTIVE

Brain Objective

The Brain’s objective can be summed up to reduce the latency to the lowest amount of

time possible while maintaining all of the integral data points for analysis and later processing.

Given the desire for expanding tools and integrate later functionality or algorithms, responsibility

between classes (or in this case projects) needs clear distinction. The Brain (a single project) will

process and store data in large concurrent collections, make any connections external to the

application, signal changes via subscriptions, and maintain macro level trades. Macro trades

become important when rules are desired regardless of the trading algorithm implemented.

Macro trades become especially important when multiple instances of trading algorithms are

utilized.

Tertiary “Core” Objective

The trading logic, hereafter referred to as the “Core”, will need refactoring to handle only

data available in the Brain. REST Calls and DB queries need removal from all portions of the

application’s logic, to include its non-Brain dependencies. This allows for one point of focus for

improving network performance (the Brain), and one point of focus for improving machine-

efficiency (the Core), and one point of focus for improved concurrent output and data structures

(the Brain). The separation of logic allows for easier distinction of responsibility and a great

reduction in the time intensive operations required by the trading logic.

Successful concurrent operations in the Brain and reducing heap allocations are key to

making this successful. The initial idea diagram for the Brain’s architecture can be found in

figure 1.

4

Figure 1 Macro Level Diagram

IMPLEMENTATION

The initial approach utilizes principles of object-oriented design and event driven

concurrent programming. While no strict paradigm was kept in mind, the first step in designing

was to template a division of responsibility between the Brain and the Core. Interdependent

objects with singular responsibilities are created within both applications. Concurrent event

handlers hold the responsibility of communicating events in the Brain. Upon initiation of a Core

application, methods external to the Brain subscribe to pertinent events in the Brain. Given the

outline provided in figure 1, creating the Brain was the first step, removing any non-trading logic

from the core application the second, and then creating new data structures for concurrent

operations in the Brain, reducing heap allocations, and improving performance in both the Brain

and Core applications final.

5

Creating the Brain

 An abstract base class entitled “MemberBase” is utilized for all responsibilities of the

Brain. This ensures expansions follow the same rule set for scalability. Each member contained a

pointer to its “Master” to contact other parts of the Brain and utilized configured variables.

Furthermore, each class was divided into a minimum of 3 partial classes for easy navigation: the

unnamed base for storing variables, an initiator to initiate variables and pertinent operations, and

a closer to dispose of variables and run closing operations. A rule of simplicity within a

document was used, “KISS” (keep it simple stupid) being the guiding principle even throughout

a complex application. An example of the abstract base class can be found in figure 2.

Figure 2 MemberBase.cs

While the “Master” class does not inherit from MemberBase, it follows the same

structure of divvying into partial classes with its unnamed variable store, an initiator, and a

closer. Beyond the three mandatory partials are two socket configurations and MacroCalls which

allows for external applications to make a call across the Brain’s application.

6

The “Data” member class holds the responsibility of processing and storing the data of

the Brain. Aside from its initiator, closer, and unnamed partial classes, Data holds a

“CollectionAccess” member for application-external and application-internal access to its

collections and two socket data processors for receiving raw data and deciding which data types

to use and collections to store such data.

The “DBAndDisk” member class expands upon its basic responsibilities with a

DataDump class for emptying the collections in “Data” and storing them in any database or disk

based upon settings passed on the Brain’s initiation. “Orders” processes order data for storage.

“Snapshots” processes market data for storage. Given historical data is needed for analysis and

potentially for application strategies, a concurrent system of storing historical data as close as

possible and without impacting the general speed is necessary.

The member class “External” maintains responsibility for any calls external to the over-

arching application (i.e., to other services), parsing such data, and passing it to the correct

processor. Aside from its basic member partial classes, it contains “MacroTrades” which applies

proprietary trading algorithms, “PolygonOps” which obtains market data, “REST” which makes

RESTful calls, and “Trades” which makes trades.

“Subscriptions” (a member) handles both internal and external subscriptions to events in

the Brain. In addition to its member functions, “Data” handles internal data related events and

“Master” handles events that impact operations across the brain.

Non-members (classes that do not inherit from “MemberBase”) include a modified

CancellationToken for cancellation of parallel operations, and a proprietary class for trading

(non-essential to this project).

7

The final solution structure can be found in figure 3.

Figure 3 Final Solution Structure

Modified Data Structures, Networking, and Data Types

Careful parallelism is necessary for implementation of the Brain. Concurrent data

structures are necessary in to allow for multiple algorithms to read data from the same

8

collections while others write data to them. The market data socket received new data in

nanoseconds rendering a need for parallel events in the case that certain subscribed methods

could not finish executing prior to another need to invoke an event. A means to prevent freezing

the application until data was stored is needed. Standard library data structures are too broad and

thus, proved too slow for our purposes. As a result, several standard data structures were

replaced with reduced footprint, concurrent imitations that may implement memory manipulation

and copying instead of traditional heap allocation and iteration. Furthermore, after implementing

a socket that could parse raw market data, random access memory (RAM) becomes an

immediate concern if running on a single server.

To resolve the concurrent collections dilemma, required data structures were created in a

GeneralLibrary for use across the application and prefaced by the name “ThreadSafe”. The

underlying data structure to use is stored, privately, in each thread-safe class with an additional

monitor. Typically, a monitor, similar to a mutex, but for internal use only and significantly

faster processing, is used to queue thread-sensitive operations in public methods. For iteration

across the collections, copies of the collection at that time iteration is necessary are made and an

iterator is returned for the copy until iteration has completed and the copy is disposed.

9

Figure 4 Example for Iteration

This allows for simple C# iteration across the data structures like so:

foreach (var thing in dictionary)

10

 Events are created in a similar fashion with an empty object (to serve as a monitor) for

locking, and a base delegate and event. A simple thread safe event with no parameters and

returning void looks like figure 5.

Figure 5 ThreadSafeAction

Allowing one to add a method as simply as show in figure 6.

Figure 6 Adding a void method to a thread-safe action

11

 SemaphoreSlim, a slimmed down version of a semaphore provided by the .NET standard

library, allows for locking faster than a mutex and timeout operations across applications. These

were used to process several macro-operations across the Brain.

 C# allocates classes, by default, to the heap. Structs and local primitives are typically

stored in the stack. Several data types were then converted to structs when possible, arrays of

structs, and structs of arrays, to limit heap allocations within methods. Raw data is parsed as

memory, instead of converting to strings or collections, if modification is necessary. An example

from the market socket displays such practice:

Figure 7 Example pipe from socket

12

The ArraySegment<T> represents a pointer to a segment of an array (for example, indexes 0 to

200). In this case a large buffer is created in the method’s stack memory upon the initialization of

the socket, and bytesReceived points to a section of the buffer in memory. The fragment from the

socket is received as an asynchronous stream (WebSocketReceiveResult) which allows

processing before all the data is received. Based on header information we can increment the

offset and continue receiving data until the final fragment is received with new pointers to each

offset in the array. This allows us to begin processing from multiple parts of the array before all

of the information is allocated. Another array is rented from a global array pool and the buffer is

then copied as a block of memory to the rented array (resArray) so the buffer is free to begin

processing other messages. The rented array is then passed to a MemoryStream which creates a

stream of binary data for processing by a custom 8 bit Unicode Transformation Format (UTF-8)

parser that finally passes it to a thread-safe delegate that the Brain subscribes to.

Streaming and array re-use allow for exponentially reduced time for execution and heap

allocation. The call to an asynchronous UTF-8 stream creates a token to the first UTF-8 segment

and allows processing of the message into an in-memory struct before the message is fully-

received or converted. Once processing is finished, it is disposed. The renting of arrays allows

the re-use of arrays which prevents the need for reallocation of up to 6 megabytes every time

they’re needed. This concept is used throughout the application.

CONCLUSION

The Brain is successful given the objective of removing latency discrepancies from the

original application. Latency from the algorithm’s execution of collecting market data to making

a decision is reduced from 7.2 seconds to <1 ms. The retrieval of data is so fast that it’s

13

intentionally throttled to 500ms. The resulting reduction of trade time is from 2.1 seconds to 49

milliseconds. Much of the latency was the amount of time it took for:

• a collection of market data via REST

• process such data in the application

• store data in the database

• process information in the database

• retrieve processed information in the application

• process information in the application

• execute trade via REST call based on processing.

The new process is:

• retrieve data via socket

• process data concurrently in memory

• execute trades concurrently via socket.

Disparities between simulation and live trading still exist but identified as algorithmic

distinctions and profit is typically in-line with simulation (as opposed to prior).

FUTURE WORK

 The Brain is currently designed to require a new instance for each user. This means we

can only support a single instance on one machine However, this requires maintaining a separate

instance with the data provider and added stress to our internet connection. A better alternative

would be to acquire data via the single external connection and propagate it over the network as

a distributed repository. Apart from separating customized user settings, this would require

14

converting several of the monitors to semaphores and modifying some collections. The upside to

doing so would be reduced costs in storing data in memory (each instance requires about 64 GB

of RAM per user), the downside is reduced performance (with more concurrent reads to the same

collections, the performance will inevitably go down). Performance deterioration can be

mitigated via concurrent messaging systems like MassTransit.

REFERENCES

Microsoft. (2021, 12 11). Caching. Retrieved from Microsoft Documentation:

https://docs.microsoft.com/en-us/dotnet/core/extensions/caching

		Kevin McCarty <kmccarty@nnu.edu>, dmatlock@nnu.edu, Barry Myers <blmyers@nnu.edu>
	2022-04-29T17:01:41+0000
	Kevin McCarty: 37°20′7″N 121°53′6″W (658.0 m), dmatlock@nnu.edu: 43°33′50″N 116°33′50″W (20.943 m), Barry Myers: 43°33′50″N 116°33′47″W (35.0 m)
	Certify the signatures of Kevin McCarty <kmccarty@nnu.edu>, dmatlock@nnu.edu, Barry Myers <blmyers@nnu.edu>

