
NORTHWEST NAZARENE UNIVERSITY

Creating a Website with Laravel Framework for Northwest Nazarene University
Students to Buy and Sell Books to Each Other.

THESIS
Submitted to the Department of Mathematics and Computer Science

in partial fulfillment of the requirements
for the degree of

BACHELOR OF SCIENCE

Audree Montmeny
2022

THESIS
Submitted to the Department of Mathematics and Computer Science

in partial fulfillment of the requirements
for the degree of

BACHELOR OF SCIENCE

Audree Montmeny
2022

Creating a Website with Laravel Framework for Northwest Nazarene University
Students to Buy and Sell Books to Each Other.

Author: __
Audree Montmeny

Approved: __
Barry L. Myers, Ph.D., Professor of Computer Science,
Department of Mathematics & Computer Science, Faculty Advisor

Approved: __
Catherine Becker, Ph.D., Assistant Professor of English,
Department of English, Second Reader

Approved: __
Barry L. Myers, Ph.D., Chair,
Department of Mathematics & Computer Science

Abstract

Creating a Website with Laravel Framework for Northwest Nazarene University
Students to Buy and Sell Books to Each Other.

MONTMENY, AUDREE (Department of Mathematics and Computer Science),
MYERS, DR. BARRY (Department of Mathematics and Computer Science)

While many websites, applications, platforms, etc., are available for current or previous
students to buy and sell books to each other, none exist specifically for Northwest
Nazarene University (NNU) students. The purpose of creating a website specifically for
NNU students is convenience, safety, and reliability. In this project, a website was
explicitly developed for NNU students using the features of the Laravel framework,
including models, controllers, view, artisan, composer, and migrations. The website was
built using HTML5, CSS, JavaScript, jQuery, and PHP. The project results are user
login/register page, create book form, image upload, dashboard, edit, delete, and a
search and sort ability has been built. Users can create a post about a book with the
information of title, author, ISBN, subject, description, price, and image cover photo.
User data is stored in a user table, while a separate table stores book data. While the
main pages have been built, more work needs to be done to make the website more
functional and user-friendly.

iii

Acknowledgments

First, I would like to thank Zac Vineyard for generously sacrificing his time to

provide help and guidance throughout the development of this project. Next, I would like

to thank my friends, family, coaches, and teammates for supporting and encouraging

me throughout my collegiate career as a student and athlete. Lastly, I would like to

extend a special thank you to my professors, Dr. Myers, Dr. Hamilton, and Dr. McCarty,

for educating and, most importantly, preparing me for the future.

iv

Table of Contents

Abstract iii

Acknowledgments iv

Table of Contents v

Table of Figures vi

Introduction 1
Background 1

Development Environment 3
Laravel 3
Sublime Text 4
Sequel Pro and DBngin 4

Requirements 5
Website Requirements 5
Database Requirements 6

Implementation 6
Getting Started 6

Artisan 6
Composer 6
Model 8
View 8
Controller 8
Route 9

Database Implementation 10
Website Implementation 15

Welcome.blade.php 16
Dashboard.blade.php 17
Home.blade.php 18
Create.blade.php 19
Index.blade.php 21
Show.blade.php 25
Edit.blade.php 26

Conclusion 28
Future Work 29

v

References 31

Appendix A - Screenshots 32

Appendix B - Code 48

Table of Figures and Code

Figure 1 - Composer Setup 7
Figure 2 - Creating the Project 7
Figure 3 - Generating an Application Key 7
Figure 4 - Relationship Diagram 9
Figure 5 - Startup Database Screen 11
Figure 6 - Tables in Sequel Pro Database Application 12
Figure 7 - User Table in Database 13
Figure 8 - Books Table in Database (Pt. 1) 13
Figure 9 - Books Table in Database (Pt. 2) 14
Figure 10 - User Registration Form 15
Figure 11 - User Login Form 16
Figure 12 - Welcome.blade.php 17
Figure 13 - Dashboard.blade.php 18
Figure 14 - Home.blade.php 19
Figure 15 - Create Book Listing Form 20
Figure 16 - Store Function to Save Books to Database 21
Figure 17 - Book Posting List View 22
Figure 18 - Search Function 23
Figure 19 - Page View 24
Figure 20 - Index Function in BookController 24
Figure 21 - Show.blade.php View of Book Details 25
Figure 22 - Edit Book Post Form 27
Figure 23 - Update Function in BookController 28
Navigation.blade.php 48
Welcome.blade.php 54
Dashboard.blade.php 57
Home.blade.php 58
Create.blade.php 60
Index.blade.php 64
Show.blade.php 67
Edit.blade.php 69
BookController.php 72

vi

Introduction

The primary goal of this project was to create a progressive website application that

would allow users to safely and efficiently buy and sell books to one another. The target

audience for this project is the Northwest Nazarene University (NNU) community, specifically,

but not limited to, current, previous, and incoming students.

Background

Textbooks required for college courses are expensive. On average, the cost of books

and supplies at a four-year institution for the 2020-21 school year was $1,250 (U.S. Department

of Education et al., 2021). While some students still elect to purchase new textbooks, many opt

to purchase used textbooks to save money. Over the years, the used textbook market has

become prevalent. Whether a student buys a new or used textbook, a great way to compensate

for a portion of the cost is to sell the textbook to another student in need. Instead of letting

textbooks that students no longer need sit around, they could be sold. Doing so would make

better use of them and recover part of their expenditure.

Many websites, programs, and applications for users to buy and sell textbooks are

available. Some of these popular websites include eBay, Facebook Marketplace, Chegg,

Bookscouter, etc... However, nothing has been developed specifically and exclusively for the

NNU community yet. While popular websites, programs, and applications have a lot to offer, a

website specifically for NNU students to buy and sell books to each other provides many more

advantages.

The significant advantages that the NNU website offers are convenience, safety,

reliability, and efficiency. The convenience of buying/selling books to others in the NNU

community is substantial. Buyers or sellers do not have to go out of their way to deliver the

1

purchased book. Instead, they can meet in locations on campus. Keeping transactions within

the community almost guarantees most users have connections in some way or another due to

the small school size. Typically, if other websites are used to organize an in-person interaction to

sell a book, a neutral location is chosen by both parties to meet and make the transaction.

However, this would not be the case as both parties would be from NNU. Therefore, there is an

additional sense of safety.

Additionally, there would be a significantly high, almost guaranteed, buyback rate. The

sellers are students who have purchased books for classes they have taken, and other

students, assuming that the professor does not change the course materials, will undoubtedly

have to take that same class and require the same textbook. As there is an extremely high

likelihood that a textbook can easily be sold once it has been finished, purchasing one would be

much more comfortable for students because they would know that a portion of the money will

be recovered. This also makes the option to buy a textbook, rather than rent, a lot more

desirable. Moreover, students would receive their books immediately rather than wait for

shipping when they order. The added stress of returning the textbook at the end of the semester

will also be eliminated if the textbook is bought rather than rented.

With all of these advantages in mind, creating a website for NNU students to buy and

sell books became the adopted idea for the project. This decision resulted in taking the first step

of action, seeking the help of the NNU webmaster, Zac Vineyard. Zac provided guidance on

where to begin, what language to use to develop the project, and the tools to use.

2

Development Environment

Laravel

Help from mentor, Zac Vineyard, was sought because he was responsible for developing

and deploying NNU’s websites. The goal was for the book-selling website to use the same

environment and development plan as the other NNU websites. Zac suggested using Laravel as

a framework to provide a solid foundation. With his previous experience using Sublime Text to

develop websites, he also suggested that as the text editor to host the development of the

website. Sequel Pro and DBngin were also used by reason of suggestion from the mentor.

Laravel was used to develop this project, along with several other technologies. Laravel

is an open-source PHP (Hypertext preprocessor). A framework is essentially the starting code to

build a project. By providing structure and a starting point, the framework enables developers to

focus on creating excellent applications instead of worrying about the details (Installation - Meet

Laravel, n.d.). It offers simple characteristics that help developers write organized,

self-documenting code (Multani, 2018). Due to running on PHP, it is entirely server-side and

focuses substantially on data manipulation and adhering to an MVC (Model View Controller)

architecture. Laravel was used to save time and labor because it does not require having to

build the whole project from scratch. However, it ended up needing a lot of additional overhead

due to a lack of experience with PHP and the framework.

Unlike other frameworks, the Laravel framework is better suited to develop this project,

as the website will require both front-end and back-end support to operate effectively.

Furthermore, Laravel's built-in user authentication, online documentation covering the full-stack

development process, and other advantages make it superior to other full-stack frameworks.

The Laravel framework is an expressive framework suitable for large-scale projects.

3

Sublime Text

Sublime Text was used as an IDE (Integrated Development Environment) to host the

project. Sublime Text supports major programming languages, including, but not limited to, the

languages used to develop this project: PHP, HTML, CSS, and JavaScript. PHP was used to

communicate between the website and the database on the back-end. HTML and CSS were

used to interact with the browser to build the website's foundation on the front-end. JavaScript

was also used on the front end to style the website. With Sublime Text, the browser can access

the IDE, so web applications can be developed and debugged much faster than they would in a

local environment (Hoissan, p. 11).

Sequel Pro and DBngin

The MySQL database for this project was created and managed with DBngin and

Sequel Pro. DBngin is an all-in-one version management application that helps set up and

manage the local database server (DBngin: Free all-in-one database version management tool).

Sequel Pro is a database management application and one of the best GUI (Graphical User

Interface) tools for MySQL. These applications worked together by DBngin using MySQL

binaries to set up the local server so that a database could be created and managed on Sequel

Pro and linked to the project in Laravel.

Before starting the project, these applications were recommended on account of

functionality and usability with Laravel on a macOS platform. Both applications were developed

for and supported exclusively by macOS, the platform on which this project was developed.

Once implemented into the project in Laravel, all of these suggestions proved to be accurate;

therefore, no other applications were considered.

4

Requirements

In the beginning, many requirements for the website were established to provide

guidance for the criteria needed to develop the project. However, as the project's development

progressed, these requirements consistently changed. The initial requirements will be exhibited

and discussed in the following section.

Website Requirements

Before beginning any development on the project, the website's goals and requirements

were established. Manageable and attainable project size in the time parameters given for this

project were considered. Therefore, the website's goal was to provide a means for NNU

students to buy and sell their used textbooks.

A user and login system became an imperative requirement to distinguish users and

allow them to access and participate in the website's services. In order to be able to implement

a user/login system, a database was required to store the user information. Providing users with

the ability to create a post for a book was also a requirement. This post needed to contain

details of the book, including title, author, ISBN, description, and a picture of the cover. The post

also needed to include information on the user, including their name and email address. A

function to upload and store an image needed to be developed to permit a picture in the post. A

dashboard to list and allow users to view all of the postings that have also been created proved

to be a requirement. When more students use the website, and there is a large amount of

information available, the implementation of a search feature is crucial to ensure that students

can find the books they are looking for. Also deemed essential was the ability to edit and delete

a post.

5

Database Requirements

Database requirements were relatively simple because of Laravel’s pre-build migrations

and non-extensive data conditions. These pre-built migrations are “failed_jobs,” “job_batches,”

“migrations,” “password_resets,” “personal_access_tokens,” “sessions,” and “users,” and they

provide basic user authentication and registration functionality. Also available are custom

migrations. Only one table to hold book information was required. Therefore, only one custom

migration was required for a table to store book information, titled “books.” The fields that the

books table was required to contain were title, author, ISBN, subject, description, price, and the

path of the cover image.

Implementation

Getting Started

Artisan

Artisan is the command-line interface that is included with Laravel. The artisan command

aims to help reduce common and repetitive tasks. Therefore, the artisan command helps

decrease the development time and complexity of Laravel projects (Hoissan, p. 10). The artisan

commands were used to set up and develop the laravel website.

Composer

The first step to running the Laravel application was to install a Composer program, a

package manager for PHP. By installing composer, all of the libraries that were needed to create

and run the project were included. To install Composer, a series of commands were run in the

terminal (Figure 1). Installation of Composer was necessary to set up Laravel.

6

Figure 1

Composer Setup

The next step was to create the project. The command “composer create-project

laravel/laravel example-app” was executed in the terminal, as seen in Figure 2. Following, an

application key was generated. Generating an application key was accomplished by executing

the command “php artisan key: generate” in the command line (Figure 3). After executing this

command, the application was viewable in the browser.

Figure 2

Creating the Project

Figure 3

Generating an Application Key

7

Model

Laravel uses MVC architecture to separate application logic into three main things that

make up an application: models, views, and controllers. Models are effectively used as data

stores and provide a simple implementation for working with the database. Each database table

has a corresponding "Model" which is used to interact with that table. These models can be

related by using relationships just as would be typical with a standard SQL database (Row,

2018).

A Book model was created with the command “php artisan make:model Book” to interact

with the database described below. The Book model provided the ability to query for the data in

the books table, as well as insert new records into the table.

View

Views output data on the screen via controller or route. This is usually HTML (hypertext

markup language), but views specifically separate the controller and application logic from the

presentation logic. However, Laravel comes with a templating engine called Blade. Blade

templates are compiled into PHP code and cached until modified, so it has virtually no overhead

(Views, n.d.). Each page of the website was created with the template blade engine.

Controller

Controllers handle incoming HTTP (hypertext transfer protocol) and send a response.

They direct traffic between models and views. Groups of logic related to handling requests can

be contained in one controller class. It handles the requests coming from the Routes (Hoissan,

p. 7).

A resource controller was created to handle the routes between the Book model and the

views in the project with the command “php artisan make:controller BookController.” The

8

BookController was used to perform the CRUD (create, read, update, delete) operations for the

route in the controller for the Books model to create the functions of the website.

Route

A route is necessary to use the controller and allowed the BookController to be put into

action. When the user hits the browser request it goes to a route first then it finds the controller

attached to the route. A diagram was created to exhibit the relationships between the route,

controller, model, and view and how they work together in the project (Figure 4).

Figure 4

Relationship Diagram

9

Database Implementation

Setting up the database was very simple once both the Sequel Pro and DBngin

applications were installed. Generating an application key created a .env file. The .env file

specifies the environment of the project. All that needed to be done to set up the database was

to enter the username and host server number into the .env file shown in. Once this step was

complete, the database was successfully connected to the project. A picture of the Sequel Pro

(left) and DBngin (right) can be seen in Figure 5, with the username it came with and the host

information. The command "php artisan migrate" was executed in the terminal. This command

migrated the tables that were already in the project after creating it due to the framework of

Laravel. Once the database was implemented, a local server was required to test the project.

The project can be run through a local development server by executing the command "php

artisan serve" in the project's terminal. Once this was complete, the website could run and be

tested. While this is a great way to develop and test a website on a local machine, it is not a

complete web server meant to host a project. This means that the website cannot be accessed

by any other means than on the local machine with the webserver.

10

Figure 5

Startup Database Screen

Migrations were built-in when the project was created with Laravel, as well as the ability

to make custom migrations. It comes with six migrations: "failed_jobs," "job_batches,"

"migrations," "password_resets," "personal_access_tokens," "sessions," and "users ." The

command "php artisan migrate" was executed to create these tables. The only custom migration

that needs to be run is a migration for the "books" table to store all of the book data. The

command "php artisan make: migration create_books_table" was executed in the project's

terminal to create this table. The "php artisan migrate" command migrated all of these

fundamental tables into the Sequel Pro system used with the website. A visual of these tables in

the Sequel Pro database system is shown in Figure 6.

11

Figure 6

Tables in Sequel Pro Database Application

By running the “php artisan make:migration create_books_table” command, a migration

file was also created in the project. With the Artisan command, the database was created

through the “up” method of the file. The attributes required to be stored in the books table were

added to the up method. The attributes that were added to the method were “title,” “author,”

“isbn,” “subject,” “description,” “price,” “inputemail,” “inputname,” and “price.” Once migrated

again, these attributes were added to the books table. Code for this method can be found in

Appendix B under create_books_table.php.

Additionally, Laravel uses Eloquent, an ORM (object-relational mapper), for interaction

with the database (Laravel). A books model was created to interact with the books table using

Eloquent. The command “php artisan make:model Books” was executed to create this model.

The “Books” model also provided a means to insert, update, and delete data from the books

table.

Once development was complete, and the website was employable, the database

functioned correctly and stored all necessary data in the appropriate tables. A couple of people

were asked to register on the website to test the user authentication and log-in functionality and

have data in the database. A picture of the user table after multiple people registered on the

website is shown in Figure 7. Using the function to create a book listing on the website, multiple

12

books were created to test the function and allow data in the books table to be present. The

resulting books table, which stores all of the enterable data on each book, is shown in Figures 8

and 9.

Figure 7

User Table in Database

Figure 8

Books Table in Database (Pt. 1)

13

Figure 9

Books Table in Database (Pt. 2)

14

Website Implementation

As previously mentioned, the Laravel project came with a user authentication system,

which included user registration and login functionality. A password recovery function was also

included to help registered users recover their passwords if forgotten. A picture of the

registration function can be seen in Figure 10, and a picture of the login function can be seen in

Figure 11. However, some CSS was applied to change the style. As shown in the picture, the

login function can save the user’s information to make it easier for future login.

Figure 10

User Registration Form

15

Figure 11

User Login Form

In order to begin development on the website, a controller was created for books. The

BookController was created through the command “php artisan make:controller BookController.”

This BookController organized all related request handling logic into one class rather than

defining all related request handling logic as closures in the routes file. The BookController also

contained all of the methods for the CRUD (create, read, update, delete) operations for books.

However, the appropriate route had to be defined and requested in the web.php routes file for

these operations to run. The code for the routes can be found under web.php in Appendix B.

Welcome.blade.php

A basic welcome page was shipped with the project from Laravel. However, CSS was

implemented to customize this welcome page toward a book theme. The purpose of the page is

16

to provide users with a startup page where they can log in or register for the website. In the top

right of the page is a “Log in” or “Register” button for the user. If the user is already logged in, a

“Home” button redirects the user to the home page. A picture of the page can be seen in Figure

12, and the code for the page can be seen under welcome.blade.php in Appendix B.

Figure 12

Welcome.blade.php

Dashboard.blade.php

Upon logging in from the welcome page, the user is directed to the dashboard page,

where he or she receives a notification that they have successfully logged in. A picture of this

page and the navigation bar are displayed in Figure 13, and the code can be viewed under

dashboard.blade.php in Appendix B.

17

Figure 13

Dashboard.blade.php

Home.blade.php

A simple home page was also created to provide background and an introduction to the

website. Due to limited time, the home page was not the main priority. Therefore, minimal

information and design were included, as shown in Figure 14. Code for this page can be seen

under home.blade.php in Appendix B. Not pictured in Figure 14 is the top of the book image,

header, and navigation bar on every page.

18

Figure 14

Home.blade.php

Create.blade.php

The create page is the page used to create book listings that users wish to sell. On this

page, there is a form for the user to fill out with the fields: "Name," "Email," "Title," "Author,"

"ISBN," "Subject," "Description," "Price," and "Cover Image" (Figure 15). The "Cover Image"

field is a function that allows the user to upload a picture of the textbook's cover. This is not a

field to be filled out but rather to select and upload an image from the computer. Once all the

fields of the form have been filled out, and the user clicks the "Submit" button, all of the

information is stored in the books table of the database.

19

Figure 15

Create Book Listing Form

The book information is saved to the database via the store function in the

BookController.php file. A picture of this function is shown in Figure 16; however, the complete

code of the file can be found under BookController.php in Appendix B. Once the book is saved

20

to the database, the user is redirected to the page that contains a view of all the book listings

with a success message at the top that reads, “You did it!”.

Figure 16

Store Function to Save Books to Database

Index.blade.php

The index page displays all of the book postings that have been created in ascending

order by title (Figure 17). Each posting is displayed separately with a few primary attributes,

21

including the cover image, title, author, and subject. Additionally, there is a button on the post

with the word “view.” If this button is clicked, the user is directed to the show.blade.php page,

where more information is displayed.

Figure 17

Book Posting List View

A search function is also included in the top left corner to make it easier for users to find

specific books. The function takes the input text and searches the title of every book post that

includes that text (Figure 18). Then, it displays only the book postings that include the text in

ascending order by title. Furthermore, to make viewing book postings more ideal, the posts are

organized into pages with ten postings per page using the “paginate(10)” function. This function

can be seen when the user reaches the bottom of the page. The option to navigate through the

pages is also given (Figure 19). A picture of this function in the BookController is shown in

Figure 20.

22

Figure 18

Search Function

23

Figure 19

Page View

Figure 20

Index Function in BookController

24

Show.blade.php

As mentioned earlier, the show.blade.php page is displayed when the user clicks the

button to view more details from the list of book postings found on the index.blade.php page.

More information on the book is viewable on this page. The rest of the user's attributes assigned

to the book by filling out the “create” form are displayed (Figure 21), along with buttons to edit or

delete the book posting. Clicking on the “Edit” button navigates the user to the edit.blade.php.

Clicking the “delete” button deletes the book post from the website and database, so it will no

longer be present in the list of book postings on the index.blade.php page.

Figure 21

Show.blade.php View of Book Details

25

Edit.blade.php

The edit page allows the user to make changes in their book listing. The user is directed

to the edit.blade.php page when clicking the “Edit” button on the show.blade.php page. As

shown in Figure 22, the page contains the same form used to create a book listing. However, all

of the information previously entered into the create form and saved in the database is already

present in each field. This is done by retrieving all of the data from the database in the update

function (Figure 23). Once the user makes the desired changes, the “submit” button is clicked,

and the new information is saved to the database. The user is then redirected to the index page

with a message saying, “It has been updated!”.

26

Figure 22

Edit Book Post Form

27

Figure 23

Update Function in BookController

Conclusion

One of the most challenging aspects that included many roadblocks was the use of the

Laravel framework. Ideally, the framework should save time and energy in developing tedious

functions and features. However, there was no previous experience with the framework and

minimal experience with PHP. As mentioned previously, using Laravel required a lot of extra

overhead that proved to be unideal. Additionally, a considerable obstacle that was faced was the

relocation of mentor, Zach Vineyard. After Christmas break, he took a different job and was no

longer with NNU. This posed a significant challenge because it was harder to overcome issues

28

and confusion faced during the project. He was no longer easily accessible to meet with and

help with the project.

A substantial amount of time and energy was spent understanding the framework and

working through issues faced in the process. Another struggle was little experience with the

PHP language. Essentially, it was like jumping into the deep end without first knowing how to

swim.

While it was challenging, it was also gratifying. Many roadblocks were encountered due

to a lack of knowledge and were very difficult to overcome. However, most of the roadblocks

were overcome by spending a significant amount of time going through videos and tutorials. The

hard work to overcome these obstacles made the success more rewarding. The skills and

knowledge that were learned from using a framework such as Laravel were well worth all of the

challenges that were faced.

Future Work

While much work has been done to create a website for NNU students to buy and sell books to

each other, more work is still required for the website to be fully serviceable. While some of

these features cannot be implemented until more progress has been made, others were left out

because they were at the bottom of the requirements list and time was no longer available to

complete them.

Currently, every user has access to all the information and functions of the website, meaning

anyone can view, edit, and delete each post. This is a problem because the data needs to be

protected and only allowed to be accessed by the creator, so others do not go in and edit or

delete posts that are not theirs. This feature was not implemented because of the lack of

development time. A feature like this can be created by only authorizing access to the edit and

delete functions to the user ID that created the post.

29

Another thing to be addressed is the hosting of the website. Currently, the website is

hosted on the local server of the machine on which the website was developed. However, the

website is not accessible to anyone else. For students to access and use the website, the site

and database would need to be deployed on NNU’s servers.

While an automatic email service was already shipped with the Laravel framework, the

website would need to be hosted on NNU’s server for the feature to be operational. When a new

user creates an account, the ability to create a password is functional. However, the user is not

notified that they have created an account and been given access to verify their email or can

change their password. While all of these features are already available, the website needs to

be hosted on NNU’s server for them to be operational.

While not necessary, it would be ideal for the website to contain more features and

functions, so no other resources are needed to carry out buying or selling a book. Currently, the

website is only functional for users to create, edit, and view posts. Contact information is

provided in the post. The only way purchasing or selling a book can be carried out is for users to

contact each other via email outside of the website. The only way for users to accomplish

payment transactions is outside the website via cash, Venmo, PayPal, etc. Ideally, messaging

capabilities and payment processing functionality would be implemented on the website.

Because these features are more complicated to implement, they were not at the top of the

requirements list and were deemed beyond the scope of the project.

30

References

Edureka. (2018). Laravel Tutorial For Beginners | What Is Laravel? | Laravel Training Part - 1 |

Edureka [Video]. YouTube. https://www.youtube.com/watch?v=bkyjiXSx6WE.

Hossain, S. (2019). Web Application Development with Laravel Framework. Turku University of

Applied Sciences, 34.

Laravel. (n.d.). Installation—Meet Laravel. Retrieved April 13, 2022, from

https://laravel.com/docs/8.x/installation#why-laravel

Laravel. (n.d.). Views. Retrieved April 13, 2022, from https://laravel.com/docs/8.x/views

Multani, A. (2018, May 23). Getting started with Laravel. Open Source for You.

https://www.proquest.com/docview/2048462597/citation/5283422C21C1421DPQ/7

U.S. Department of Education, National Center for Education Statistics, Integrated

Postsecondary Education Data System (IPEDS). (2021, November). Digest of Education

Statistics. National Center for Education Statistics (NCES). Retrieved March 28, 2022,

from https://nces.ed.gov/programs/digest/d21/tables/dt21_330.40.asp

31

Appendix A - Screenshots

Composer Setup

Creating the Project

Generating an Application Key

32

Relationship Diagram

33

Startup Database Screen

Tables in Sequel Pro Database Application

34

User Table in Database

Books Table in Database (Pt. 1)

35

Books Table in Database (Pt. 2)

36

User Registration Form

37

User Login Form

38

Welcome.blade.php

Dashboard.blade.php

39

Home.blade.php

40

Create Book Listing Form

41

Store Function to Save Books to Database

42

Book Posting List View

Search Function

43

Page View

Index Function in BookController

44

Show.blade.php View of Book Details

45

Edit Book Post Form

46

Update Function in BookController

47

Appendix B - Code

Navigation Bar

A navigation bar was already provided with the Laravel framework. The navigation bar included

a layout to add desired pages. There was a settings dropdown in the top right corner with the

name of the user who is logged in. The dropdown arrow reveals the option to log out. In the end,

the navigation bar had Home, Dashboard, Books, and Create tabs. The navigation bar has a

very simple design and structure.

navigation.blade.php

<nav x-data="{ open: false }" class="bg-white border-b

border-gray-100">

<!-- Primary Navigation Menu -->

<div class="max-w-7xl mx-auto px-4 sm:px-6 lg:px-8">

<div class="flex justify-between h-16">

<div class="flex">

<!-- Logo -->

<div class="flex-shrink-0 flex items-center">

<x-application-logo class="block h-10 w-auto

fill-current text-gray-600" />

</div>

48

<!-- Navigation Links -->

<div class="hidden space-x-8 sm:-my-px sm:ml-10

sm:flex">

<x-nav-link :href="route('dashboard')"

:active="request()->routeIs('dashboard')">

{{ __('Dashboard') }}

</x-nav-link>

<x-nav-link :href="route('home')"

:active="request()->routeIs('home')">

{{ __('Home') }}

</x-nav-link>

<x-nav-link :href="route('books.index')"

:active="request()->routeIs('books.index')">

{{ __('Books') }}

</x-nav-link>

<x-nav-link :href="route('books.create')"

:active="request()->routeIs('books.create')">

{{ __('Create') }}

</x-nav-link>

</div>

</div>

<!-- Settings Dropdown -->

<div class="hidden sm:flex sm:items-center sm:ml-6">

49

<x-dropdown align="right" width="48">

<x-slot name="trigger">

<button class="flex items-center text-sm

font-medium text-gray-500 hover:text-gray-700 hover:border-gray-300

focus:outline-none focus:text-gray-700 focus:border-gray-300

transition duration-150 ease-in-out">

<div>{{ Auth::user()->name }}</div>

<div class="ml-1">

<svg class="fill-current h-4 w-4"

xmlns="http://www.w3.org/2000/svg" viewBox="0 0 20 20">

<path fill-rule="evenodd"

d="M5.293 7.293a1 1 0 011.414 0L10 10.586l3.293-3.293a1 1 0 111.414

1.414l-4 4a1 1 0 01-1.414 0l-4-4a1 1 0 010-1.414z"

clip-rule="evenodd" />

</svg>

</div>

</button>

</x-slot>

<x-slot name="content">

<!-- Authentication -->

<form method="POST" action="{{

route('logout') }}">

@csrf

50

<x-dropdown-link :href="route('logout')"

onclick="event.preventDefault();

this.closest('form').submit();">

{{ __('Log Out') }}

</x-dropdown-link>

</form>

</x-slot>

</x-dropdown>

</div>

<!-- Hamburger -->

<div class="-mr-2 flex items-center sm:hidden">

<button @click="open = ! open" class="inline-flex

items-center justify-center p-2 rounded-md text-gray-400

hover:text-gray-500 hover:bg-gray-100 focus:outline-none

focus:bg-gray-100 focus:text-gray-500 transition duration-150

ease-in-out">

<svg class="h-6 w-6" stroke="currentColor"

fill="none" viewBox="0 0 24 24">

<path :class="{'hidden': open, 'inline-flex':

! open }" class="inline-flex" stroke-linecap="round"

stroke-linejoin="round" stroke-width="2" d="M4 6h16M4 12h16M4 18h16"

/>

51

<path :class="{'hidden': ! open,

'inline-flex': open }" class="hidden" stroke-linecap="round"

stroke-linejoin="round" stroke-width="2" d="M6 18L18 6M6 6l12 12" />

</svg>

</button>

</div>

</div>

</div>

<!-- Responsive Navigation Menu -->

<div :class="{'block': open, 'hidden': ! open}" class="hidden

sm:hidden">

<div class="pt-2 pb-3 space-y-1">

<x-responsive-nav-link :href="route('home')"

:active="request()->routeIs('home')">

{{ __('Home') }}

</x-responsive-nav-link>

<x-responsive-nav-link :href="route('dashboard')"

:active="request()->routeIs('dashboard')">

{{ __('Dashboard') }}

</x-responsive-nav-link>

<x-responsive-nav-link :href="route('books.index')"

:active="request()->routeIs('books.index')">

{{ __('Books') }}

52

</x-responsive-nav-link>

<x-responsive-nav-link :href="route('books.create')"

:active="request()->routeIs('books.create')">

{{ __('Create') }}

</x-responsive-nav-link>

</div>

<!-- Responsive Settings Options -->

<div class="pt-4 pb-1 border-t border-gray-200">

<div class="px-4">

<div class="font-medium text-base text-gray-800">{{

Auth::user()->name }}</div>

<div class="font-medium text-sm text-gray-500">{{

Auth::user()->email }}</div>

</div>

<div class="mt-3 space-y-1">

<!-- Authentication -->

<form method="POST" action="{{ route('logout') }}">

@csrf

<x-responsive-nav-link :href="route('logout')"

onclick="event.preventDefault();

this.closest('form').submit();">

53

{{ __('Log Out') }}

</x-responsive-nav-link>

</form>

</div>

</div>

</div>

</nav>

welcome.blade.php

<!doctype html>

<html lang="{{ config('app.locale') }}">

<head>

<meta charset="utf-8">

<meta http-equiv="X-UA-Compatible" content="IE=edge">

<meta name="viewport" content="width=device-width,

initial-scale=1">

<title>Laravel</title>

<!-- Fonts -->

<link

href="https://fonts.googleapis.com/css?family=Raleway:100,600"

rel="stylesheet" type="text/css">

<!-- Styles -->

54

<style>

html, body {

background-image: url("/images/background.jpeg");

color: #636b6f;

font-family: 'Raleway', sans-serif;

font-weight: 100;

height: 100vh;

margin: 0;

}

.full-height {

height: 100vh;

}

.flex-center {

align-items: center;

display: flex;

justify-content: center;

}

.position-ref {

position: relative;

}

.top-right {

position: absolute;

right: 10px;

top: 18px;

}

.content {

55

text-align: center;

position: absolute;

bottom: 140px;

}

.title {

font-size: 84px;

}

.links > a {

color: #636b6f;

padding: 0 25px;

font-size: 12px;

font-weight: 600;

letter-spacing: .1rem;

text-decoration: none;

text-transform: uppercase;

}

.m-b-md {

margin-bottom: 30px;

}

</style>

</head>

<body>

<div class="flex-center position-ref full-height">

@if (Route::has('login'))

<div class="top-right links">

@if (Auth::check())

56

Home

@else

Login

Register

@endif

</div>

@endif

<div class="content">

<div class="title m-b-md">

Textbooks

</div>

<div class="links">

Home

Dashboard

Learn More

Books

</div>

</div>

</div>

</body>

</html>

Dashboard.blade.php

<x-app-layout>

57

<x-slot name="header">

<h2 class="font-semibold text-xl text-gray-800

leading-tight">

{{ __('Dashboard') }}

</h2>

</x-slot>

<div class="py-12">

<div class="max-w-7xl mx-auto sm:px-6 lg:px-8">

<div class="bg-white overflow-hidden shadow-sm

sm:rounded-lg">

<div class="p-6 bg-white border-b border-gray-200">

You're logged in!

</div>

</div>

</div>

</div>

</x-app-layout>

Home.blade.php

<x-app-layout>

<x-slot name="header">

<h2 class="font-semibold text-xl text-gray-800

leading-tight">

{{ __('Home') }}

</h2>

58

</x-slot>

<div class="max-w-10xl mx-auto sm:px-6 lg:px-8">

<img src="/images/books.jpeg" alt="books" style="width:100%;

height:100%">

</div>

<div class="py-12">

<div class="max-w-10xl mx-auto sm:px-6 lg:px-8">

<div class="bg-white overflow-hidden shadow-sm

sm:rounded-lg">

<div class="p-6 bg-white border-b border-gray-200">

<h1 class="about">About</h1>

<h2 class="about-head">We are so excited to have

you!</h2>

<p class="about-content">Welcome to the website

designed for the students of Northwest Nazarene University (NNU) to

buy and sell books to each other. While there are many other places

students can buy/sell their used textbooks, the goal was to provide a

safe, reliable, convenient platform for our students to interact with

each other.

</p>

</div>

</div>

</div>

</div>

59

</x-app-layout>

Create.blade.php

<x-app-layout>

<x-slot name="header">

<h2 class="font-semibold text-xl text-gray-800

leading-tight">

{{ __('Create') }}

</h2>

</x-slot>

<div class="py-12">

<div class="max-w-7xl mx-auto sm:px-6 lg:px-8">

<div class="bg-white overflow-hidden shadow-sm

sm:rounded-lg">

<div class="p-6 bg-white border-b border-gray-200">

@if ($errors->any())

<div class="alert alert-danger">

@foreach ($errors->all() as $error)

{{ $error }}

@endforeach

60

</div>

@endif

{!! Form::open(['url' => '/books', 'method' =>

'POST', 'enctype' => 'multipart/form-data']) !!}

<div class="form-group">

{{Form::label('inputname', 'Name')}}

{{Form::text('inputname', '', ['class' =>

'form-control', 'placeholder' => 'First and Last'])}}

</div>

<div class="form-group">

{{Form::label('inputemail', 'Email')}}

{{Form::text('inputemail', '', ['class' =>

'form-control', 'placeholder' => 'Email'])}}

</div>

<div class="form-group">

{{Form::label('title', 'Title')}}

61

{{Form::text('title', '', ['class' =>

'form-control', 'placeholder' => 'Title'])}}

</div>

<div class="form-group">

{{Form::label('author', 'Author')}}

{{Form::text('author', '', ['class' =>

'form-control', 'placeholder' => 'Author'])}}

</div>

<div class="form-group">

{{Form::label('isbn', 'ISBN')}}

{{Form::text('isbn', '', ['class' =>

'form-control', 'placeholder' => 'ISBN'])}}

</div>

<div class="form-group">

{{Form::label('subject', 'Subject')}}

{{Form::text('subject', '', ['class' =>

'form-control', 'placeholder' => 'Subject'])}}

62

</div>

<div class="form-group">

{{Form::label('description', 'Description')}}

{{Form::textarea('description', '', ['class'

=> 'form-control', 'placeholder' => '(Optional) Description of

book'])}}

</div>

<div class="form-group">

{{Form::label('price', 'Price')}}

{{Form::text('price', '', ['class' =>

'form-control', 'placeholder' => '$'])}}

</div>

<div class="form-group">

{{Form::label('image', 'Cover Image')}}

{{Form::file('image')}}

</div>

63

{{Form::submit('Submit', ['class' => 'btn

btn-primary'])}}

{!! Form::close() !!}

</div>

</div>

</div>

</div>

</x-app-layout>

Index.blade.php

<x-app-layout>

<x-slot name="header">

<h2 class="font-semibold text-xl text-gray-800

leading-tight">

{{ __('Books') }}

</h2>

</x-slot>

64

<div class="relative flex lg:inline-flex items-center bg-gray-100

rounded-xl px-3 py-2">

<form method="GET" action="#">

<input type="text" name="search" placeholder="Search..."

class="bg-transparent placeholder-black font-semibold

text-sm"

value="{{ request('search') }}">

</form>

</div>

@if(count($books) > 0)

@foreach($books as $book)

<div class="py-12">

<div class="max-w-5xl mx-auto sm:px-6 lg:px-8">

<div class="bg-white overflow-hidden shadow-sm

sm:rounded-lg">

<div class="p-6 bg-white border-b border-gray-200">

<img style="float: left; width: 120px; height: 150px;

object-fit: cover; position: relative; right: 30px; left: 10px;"

src="/images/{{$book->image}}">

65

<div style="position: relative; left: 40px;">

<h1 style="font-weight: bold;">id}}">{{ $book->title }}</h1>

Author: {!!$book->author!!}

Subject: {!!$book->subject!!}

</div>

id }}" class="btn

btn-default" style="position: relative; left: 425px;">View

</div>

</div>

</div>

</div>

@endforeach

{{ $books->links() }}

@else

66

<p>No books found</p>

@endif

</x-app-layout>

Show.blade.php

<x-app-layout>

<x-slot name="header">

<h2 class="font-semibold text-xl text-gray-800

leading-tight">

{{ __('Books') }}

</h2>

</x-slot>

<div class="py-12">

<div class="max-w-7xl mx-auto sm:px-6 lg:px-8">

<div class="bg-white overflow-hidden shadow-sm

sm:rounded-lg">

<div class="p-6 bg-white border-b border-gray-200">

<img style="float: left; width: 260px; height:

300px; object-fit: cover; position: relative; left: 30px;"

src="/images/{{$books->image}}">

<h1 style="font-weight: bold; position: relative;

left: 100px;">{{ $books->title }}</h1>

67

<div style="position: relative; left: 100px;">

Author: {!!$books->author!!}

ISBN: {!!$books->isbn!!}

Subject: {!!$books->subject!!}

Description: {!!$books->description!!}

Price: ${!!$books->price!!}

Posted: {!!$books->created_at!!}

</div>

<div style="position: relative; left: 100px;">

Name: {!!$books->inputname!!}

Email: {!!$books->inputemail!!}

</div>

<div style="position: relative; left: 500px;">

id }}/edit" class="btn

btn-default">Edit

{!!Form::open(['url' => ['/books', $books->id],

'method' => 'POST', 'class' => 'pull-right'])!!}

{{Form::hidden('_method', 'DELETE')}}

{{Form::submit('Delete', ['class' => 'btn

btn-danger'])}}

{!!Form::close()!!}

68

</div>

</div>

</div>

</div>

</div>

</x-app-layout>

Edit.blade.php

<x-app-layout>

<x-slot name="header">

<h2 class="font-semibold text-xl text-gray-800

leading-tight">

{{ __('Books') }}

</h2>

</x-slot>

<div class="py-12">

<div class="max-w-7xl mx-auto sm:px-6 lg:px-8">

<div class="bg-white overflow-hidden shadow-sm

sm:rounded-lg">

<div class="p-6 bg-white border-b border-gray-200">

Edit Post

@if ($errors->any())

<div class="alert alert-danger">

69

@foreach ($errors->all() as $error)

{{ $error }}

@endforeach

</div>

@endif

{!! Form::open(['url' => ['/books', $books->id],

'method' => 'POST']) !!}

<div class="form-group">

{{Form::label('title', 'Title')}}

{{Form::text('title', $books->title, ['class'

=> 'form-control', 'placeholder' => 'Title'])}}

</div>

<div class="form-group">

{{Form::label('author', 'Author')}}

{{Form::text('author', $books->author,

['class' => 'form-control', 'placeholder' => 'Author'])}}

</div>

70

<div class="form-group">

{{Form::label('isbn', 'ISBN')}}

{{Form::text('isbn', $books->isbn, ['class'

=> 'form-control', 'placeholder' => 'ISBN'])}}

</div>

<div class="form-group">

{{Form::label('subject', 'Subject')}}

{{Form::text('subject', $books->subject,

['class' => 'form-control', 'placeholder' => 'Subject'])}}

</div>

<div class="form-group">

{{Form::label('description', 'Description')}}

{{Form::textarea('description',

$books->description, ['class' => 'form-control', 'placeholder' =>

'(Optional) Description of book'])}}

</div>

71

<div class="form-group">

{{Form::label('price', 'Price')}}

{{Form::text('price', $books->price, ['class'

=> 'form-control', 'placeholder' => 'Price'])}}

</div>

<div class="form-group">

{{Form::label('image', 'Cover Image')}}

{{Form::file('image')}}

</div>

{{Form::hidden('_method', 'PUT')}}

{{Form::submit('Submit', ['class' => 'btn

btn-primary'])}}

{!! Form::close() !!}

</div>

</div>

</div>

72

</div>

</x-app-layout>

BookController.php

<?php

namespace App\Http\Controllers;

use Illuminate\Http\Request;

use Illuminate\Support\Facades\Storage;

use App\Models\Book;

class BookController extends Controller

{

/**

* Display a listing of the resource.

*

* @return \Illuminate\Http\Response

*/

/**

* The attributes that aren't mass assignable.

*

* @var array

*/

protected $guarded = [];

public function index(Request $request)

73

{

$books = Book::orderBy('title','asc');

if (request('search')) {

$books->where('title','like','%'.request('search').'%');

}

return view('books/index', [

'books' => $books->orderBy('title','asc')->paginate(10),

]);

}

/**

* Show the form for creating a new resource.

*

* @return \Illuminate\Http\Response

*/

public function create()

{

return view('books.create');

}

74

/**

* Store a newly created resource in storage.

*

* @param \Illuminate\Http\Request $request

* @return \Illuminate\Http\Response

*/

public function store(Request $request)

{

$validated = $request->validate([

'title' => 'required',

'author' => 'required',

'isbn' => 'required', //|integer|min:0|max:

'subject' => '',

'description' => '',

'price' => '',

'inputname' => '',

'inputemail' => ''

]);

// Create Book

$book = new Book;

$book->title = $request->title;

$book->author = $request->author;

$book->isbn = $request->isbn;

75

$book->subject = $request->subject;

$book->description = $request->description;

$book->price = $request->price;

$book->inputname = $request->inputname;

$book->inputemail = $request->inputemail;

if($request->file('image')) //function to upload an image

{

$file = $request->file('image');

$extension = $file->getClientOriginalExtension();

$filename = md5($file->getClientOriginalName() .

time()).'.'.$extension;

$file->move('images', $filename);

$book->image = $filename;

}

$book->save(); //saves all information to books table

return redirect('books')->with('success', 'You did it!');

}

/**

* Display the specified resource.

*

* @param int $id

* @return \Illuminate\Http\Response

76

*/

//created on 11/18

// may be wrong idk

public function show($id)

{

$books = Book::find($id);

// method to select a book

return view ('books/show')->with('books', $books);

}

/**

* Show the form for editing the specified resource.

*

* @param int $id

* @return \Illuminate\Http\Response

*/

public function edit($id)

{

$books = Book::find($id); // method to select a book

return view ('books/edit')->with('books', $books);

}

77

/**

* Update the specified resource in storage.

*

* @param \Illuminate\Http\Request $request

* @param int $id

* @return \Illuminate\Http\Response

*/

public function update(Request $request, $id)

{

//dd($request);

$validated = $request->validate([

'title' => 'required',

'author' => 'required',

'isbn' => 'required',

'subject' => '',

'description' => '',

'price' => '',

'inputname' => '',

'inputemail' => ''

]);

$book = Book::where('id', $id)->get();

// $book = Book::find($id);

$book->title = $request->title;

$book->author = $request->author;

78

$book->isbn = $request->isbn;

$book->subject = $request->subject;

$book->description = $request->description;

$book->price = $request->price;

$book->inputname = $request->inputname;

$book->inputemail = $request->inputname;

if($request->file('image')) //function to upload an image

{

$file = $request->file('image');

$extension = $file->getClientOriginalExtension();

$filename = md5($file->getClientOriginalName() .

time()).'.'.$extension;

$file->move('images', $filename);

$book->image = $filename;

}

return redirect('books')->with('success', 'It has been

updated!');

}

/**

* Remove the specified resource from storage.

*

* @param int $id

79

* @return \Illuminate\Http\Response

*/

public function destroy($id)

{

$book = Book::find($id); // method to select a book

$book->delete();

return redirect('books')->with('success', 'Book has been

Removed');

}

}

80

81

		Barry Myers <blmyers@nnu.edu>, Cathy Becker <cbecker@nnu.edu>, Audree Montmeny <amontmeny@nnu.edu>
	2022-05-07T04:36:21+0000
	Barry Myers: 43°33′31″N 116°34′55″W (6447.54 m)
	Certify the signatures of Barry Myers <blmyers@nnu.edu>, Cathy Becker <cbecker@nnu.edu>, Audree Montmeny <amontmeny@nnu.edu>

